Farad, see capacitor
FCC (Federal Communications Commission), 413
FEC (forward error correction), 207
ferrite, 279
FET, see transistor
fiber optic cable, 108, 197-198
single and multi mode, 198
splicing, 198
FIFO (first-in-first-out), 236-237
clock domain crossing, 95
data rate matching, 95-96
defined, 94
FPGA usage, 261
interfaces, 95
internal structure, 94
overflow and underflow, 94
source-synchronous bus interfacing, 369-370
filter
active, 331-333
ADC and DAC, 345, 348
anti-aliasing for ADC, 350-351
bandpass, 286-287
band-reject, 286-287
cutoff frequency, 283-284
defined, 283
EMI reduction, 414
ESD protection, 416-417
gain, 283-284
highpass, 286
lowpass, 283-285
pass and stop bands, 285
passive, 283
PLL feedback loop, 362
second-order, 285-286
transformer, 290
firmware, 57
flash
bit structure, 81
block protection, 85
boot block, 83
defined, 81
erasure, 84
NOR versus NAND, 82
flip-flop
7400 family, 42
defined, 18
falling/rising-edge trigger, 18-19
FPGA, 257-258
FPGA I/O, 261-263
metastability, 234-235
PLD, 253-254
timing parameters, 23-24
using Verilog, 225-226
floating point, 138, 165-167
floorplanning, see FPGA
flow control, see handshaking
FM (frequency modulation), 109
forward bias, 293
four-corner handshaking, see handshaking
Fourier analysis, see frequency-domain analysis
Fowler-Nordheim Tunneling, 81
FPGA (field programmable gate array)
clock distribution, 259-260
defined, 257
floorplanning, 259
internal timing, 258
logic cell, 257-258, 261
RAM, 260-261
routing, 258-259
third party cores, 261
frame, network, 111, 194, 207
framing
defined, 45, 99
detection logic, 202-203
networks, 112
UART, 99-101
frequency-domain analysis, 279-283, 341
decibel usage, 281-282
FSM (finite state machine)
binary and one-hot encoding, 243-244
bus interface design example, 239, 241-242
defined, 237
Moore and Mealy types, 239
partitioning, 243
pattern matching design example, 238
pipelining, 245-247
serial communications design example, 47
state transition diagram, 48, 238
Verilog design, 239-241
FSK (frequency shift keying), 109
full-adder, 14-15
full-duplex, 113
fundamental frequency, 280
fuse
PLD, 252-253
power, 389
PROM, 79

G

gain, see filter
GAL, 252-253
Galois Field, 200, 209
gate, FET, see transistor
Gennum Corporation, 203
glue logic, 227-228
ground
earth and signal, 390
ESD, 415-417
GND symbol, 44-45
plane and impedance, 398-399
reference node, 268

H

half-adder, 14
half-duplex, 113, 217
half-power point, see filter, cutoff frequency
handshaking, 99-100
four-corner method, 236
RS-232, 104
XON/XOFF, 100, 107
harmonic frequency, 280
Harvard architecture, 149, 155, 168-169
HDL (hardware description language), 221-226
behavioral and RTL, 222, 228-229
sensitivity list, 224
test bench, 224
Verilog, 222-226
VHDL, 222
header, network, 111, 194
heat sink, 375-376, 382
HEC (header error check), 209
henry, see inductor
hertz, 24
hexadecimal, base-16, 11
hold time, flip-flop, see flip-flop
hub, star network, 110-111, 217
hysteresis, 335

I

I/O (input/output), 56
bus expansion, 70-72
direct memory access, 68-69
FPGA structure, 261-263
interaction with cache, 155
pads and die size, 250-251
performance, 171-172

PLD, 253-254
timing in FPGA, 261
voltage in PLD, 257
$\mathrm{I}^{2} \mathrm{C}$ (inter-IC bus), 119-120
IBM, 71, 134
IC (integrated circuit), 35
IEEE (Institute of Electrical and Electronics Engineers)
1149.1, see JTAG
802.3, see Ethernet

Ethernet MAC addresses, 194
floating-point, 165-167
immediate addressing, 74
impedance
capacitor, 274, 411
defined, 274
inductor, 276, 417
logic driver output, 407
match with transformer, 291
obtaining magnitude, 282-283
PCB, 400-402
power distribution, 393
transmission line, 398, 400-402
implied addressing, 73
index register, 75
indexed addressing, 75
indirect addressing, 74-75
inductor
description, 276
ESD handling, 417
filter, 285-286
noise filtering, 276-277
nonideal model, 278
switching regulator, 386-387
transformer, 288-291
ingot, semiconductor, 36
Innoveda, 409, 436
instruction
basic types, 58
CISC and RISC, 145-149
decoding, 59, 146-148
defined, 56
reordering, 164
set, 56, 169
Intel, 39, 83, 121, 125-126, 134, 199, 216
interrupt
computer design example, 66-67
defined, 62
instruction, 123, 136
logic design example, 232-233

